+34 93 401 18 60Aquesta adreça de correu-e està protegida dels robots de spam.Necessites Javascript habilitat per veure-la.UPC: C/ Jordi Girona 31, (08034 - Barcelona) - IDAEA: C/ Jordi Girona 18-26, (08034 - Barcelona)

+34 93 401 18 60Aquesta adreça de correu-e està protegida dels robots de spam.Necessites Javascript habilitat per veure-la.
UPC: C/ Jordi Girona 31, (08034 - Barcelona) - IDAEA: C/ Jordi Girona 18-26, (08034 - Barcelona)

Proyectos GHS - UPC

  • Inici
  • Projectes Internacionals

Projectes Internacionals del GHS

Projectes Recents

 

Removal and Mitigation of Pollution from the Use of Pesticides: Prevention, Recycling and Resource Management

ACRONIM: RECYCLE

Nº referència: 872607
Data inici: 1/02/2020
Duració: 48 months
 
RESUM

El flux de plaguicides de les zones agrícoles a les aigües superficials està desaprofitant un recurs escàs, de debò conflicte amb els principis d'una economia circular. L'alta presència de plaguicides en les aigües superficials és la principal causa d'eutrofització, sent un dels desafiaments clau per complir els objectius de la Directiva Europea Marc de l'Aigua. RECYCLE aborda dos problemes i desenvolupa nous mètodes i enfocaments per captar components químics en àrees agrícoles drenades i en els sediments de rierols eutrofitzats i per reutilitzar-amb fins agrícoles.

RECYCLE és un programa d'investigació coordinat que es basa en una sòlida col·laboració que s'implementa mitjançant comissions de servei entre equips que abasten els sectors acadèmic i privat, tant dins com fora de la UE. Totes les adscripcions i activitats de formació estan dissenyades per maximitzar l'avanç de el coneixement i el desenvolupament de la carrera científica o professional, així com per promoure la millora dels investigadors i professionals amb experiència i dels joves participants.

 

 
 

 

Títol: Mejora de la capacidad de predicción para el Salar de Atacama

Data de inici: 10 de juny de 2020

Duració: 18 mesos

Financiació: 99.000€

Investigadors principals: Xavier Sanchez, Daniel Fernandez i Jesus Carrera

RESUM

El projecte planteja el desenvolupament d’un model de transport reactiu al Salar de Atacama que permetrà preveure l’evolució futura de la llei de liti i dels cations de interès a la zona productiva. Inclou el desenvolupament de un model conceptual, l’adaptació de codi numèric que permetrà minimitzar dispersió numèrica i la implementació del codi a la zona de interès productiu

 


 

Títol: European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments

  • Grant Agreement: N°722028
  • Periode: 2017-2020
  • Import: 495.745,92€
  • Investigador principal: Jesus Carrera

http://cordis.europa.eu/project/rcn/205566_en.html


Título: Furthering the Knowledge Base For Reducing the Environmental Footprint of Shale Gas Development (FracRisk)

  • Financiació: UE
  • Periode: Juny 2015- Decembre 2018
  • Import: 263.000€
  • Investigador: Jesus Carrera Ramirez

http://www.fracrisk.eu/


 

Títol: FREE and open source software tools for WATer resource management (FREEWAT)

  • Financiació: UE. Grant Agrement nº: 64224
  • Període: Abril 2015- Octubre 2018
  • Import: 70.000 Euros
  • Investigador responsable: Enric Vazquez Suñe

Newsletters:

Number 2


Títol: Groundwater Risk Management for Growth and Development

  • Financiació: UE
  • Període: Marzo 2015-Marzo 2019
  • Import: 300.000 Euros
  • Investigador: Albert Folch Sancho (IP responsable-UPC)
  • Investigador responsable Co-IP de tot el projecte (2.400.000€)

Ajuda al creixement socioeconòmic en països del tercer món i en vies de desenvolupament

Africa’s groundwater systems are a critical but poorly understood socio-ecological system. Central to accelerating and sustaining Africa’s development is improved understanding of groundwater risks and institutional responses to competing growth and development goals is needed. Explosive urban growth, irrigated agricultural expansion, industrial pollution, untapped mineral wealth, rural neglect and environmental risks converge to increase the complexity and urgency of groundwater governance across Africa.The research will focus on tackling the following questions:
  1. How can risks to groundwater quality and quantity for drinking water security be identified and reduced?
  2. How can groundwater governance be designed to balance growth and development?
  3. What are the most significant and uncertain future scenarios affecting sustainable groundwater use for the poor?
The study will focus on the Kwale County area of South East Kenya where the poverty rate is high (7th most deprived out of 47 Counties in Kenya) and there is intensive use of groundwater for urban water supply, sugar cane irrigation and mining. Tackling the three questions above will involve detailed data collection, including the use of innovative ‘Smart Handpumps’ developed by University of Oxford that measure handpump use. The research brings together rigorous analysis and modelling of environmental, social, economic and governance systems and processes. A risk management tool will be developed and then tested. While sensitive to context of Kwale, the Groundwater Risk Management Tool will be designed to be flexible so that it can be scaled-up across Kenya and can be adapted to other countries and contexts.

 

 

PROJECTES RELACIONATS

África: Groundwater Risk Management for Growth and Development (Gro for Good). Amb col·laboració amb la Universit d’Oxford i diferents institucions de Kènia  aquest projecte busca desenvolupar una eina de gestió del risk per ajudar al govern i als usuaris a equilibrar desenvolupament humà, millora de la salut, creixement econòmic  i sostenibilitat de l’aigua subterrània en benefici dels més pobres.

Llatinoamèrica: En col·laboració amb el Instituto Privado de Investigación Sobre Cambio Climático s’han elaborat diferents propostes per a la sostenibilitat recursos hídrics a la Costa Pacífic de Guatemala, on la producció de canya de sucre i plàtan tenen un pes econòmic rellevant però també son importants consumidor d’aigües subterrànies.

Asia: les temperatures negatives presents gran part de l’any en moltes zones subàrtiques condicionen de forma important la disponibilitat de recursos hídrics. En aquest context s’ha estudiat quin és l’efecte de la neu, el gel i el permafrost en la recàrrega i disponibilitat d’aigües subterrànies a Mongolia (Conca del riu Upper Tuul)

The newsletter of the project Gro for Good (https://upgro.org/consortium/gro-for-good/) has been published  (February 2017):

 Newsletter_February

 


Títol: Mixing in Heterogeneous Media Across Spatial and Temporal Scales: From Local Non-Equilibrium to Anomalous Chemical Transport and Dynamic Uncertainty

  • Financiació: UE
  • Període: Noviembre de 2013 – Diciembre 2018
  • Import: 1,5M Euros
  • Investigador: Marco Dentz

Títol: MARSOL

  • Financiació: UE
  • Període: Enero 2014- Enero 2017
  • Import: 574.897 Euros
  • Investigador: Xavier Sanchez Vila

RESUM

Main Objectives
The main objective of MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence. With this, MARSOL aims to stimulate the use of reclaimed water and other alternative water sources in MAR and to optimize WRM through storage of excess water to be recovered in times of shortage or by influencing gradients. Widespread application of MAR can help address water security problems to stimulate economic development, improve public health and well-being, and maintain ecological functions and biodiversity. The use of MAR technologies can substitute the need for other, more energy-intensive water supply options, such as seawater desalination. MARSOL's main output will be a powerful knowledge base of existing field applications of MAR technologies for addressing different societal challenges related to water availability. The effectiveness, efficiency and sustainability of existing MAR technologies will be demonstrated, including operation, maintenance and monitoring procedures. Examples include different water sources, ranging from treated waste water to desalinated seawater and various technical solutions e.g. infiltration ponds, injection wells, river bed scarification, and hydraulic barriers against seawater intrusion. The pros and cons of each technology will be assessed systematically, and compared to alternative solutions. Economic costs and benefits of MAR options for the various economic sectors will be quantified. Causes of public concern or acceptance of MAR will be examined and proven ways to enhance public acceptability (e.g. through education and transfer of knowledge, evaluation of best practices) identified. Governance frameworks (laws, policies, institutions, etc.) that enhance the prospects of successful implementation of MAR will be proposed. Finally, guidelines will be developed for MAR site selection, technical realization, monitoring strategies, and modelling approaches to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. The main objectives of MARSOL can therefore be summarizes as:
• Demonstrate at 8 field sites that MAR is a sound, safe and sustainable strategy to increase the availability of freshwater under conditions of water scarcity.
• Improve the state of the art of MAR applications to enable low cost high efficiency MAR solutions that will create market opportunities for European Industry and SMEs (MAR to market).
• Promote the advantages of MAR by tailored training and dissemination programs to enable and accelerate market penetration.
• Deliver a key technology to face the challenge of increasing water scarcity in southern Europe, the Mediterranean and other regions of the world.


1.1.4 Demonstration Sites

Eight demonstration sites geographically distributed around the Mediterranean (Fig. 1.1) have been selected for the demonstration of different MAR objectives and technologies, and using different water sources:

Different MAR objectives:
• Replenishing of over-exploited aquifers (Lavrion, Arenales, Llobregat, Brenta)
• Combating sea-water intrusion (Lavrion, Malta South)
• Increasing the ecological and chemical status of aquifers (Campina de Faro, Llobregat, Brenta)
• Soil-Aquifer Treatment (SAT) (Lavrion, Arenales)
• Seasonal storage and aquifer storage recovery of surplus fresh waters (Menashe) FP7-ENV-2013-WATER-INNO-DEMO MARSOL Proposal Part B Page 5 of 92

Different recharge techniques:
• Infiltration basins (Lavrion, Campina de Faro, Arenales, Llobregat, Menashe)
• Forested infiltration area (Brenta)
• River bank filtration (Serchio)
• Wells (Campina de Faro, Malta South)
• Others (artificial wetlands, ditches, drainage pipes) (Arenales)

Different recharge water sources:
• Surface waters (Campina de Faro, Arenales, Brenta, Serchio)
• Treated effluents (Lavrion, Arenales, Malta South)
• Desalinated water (Menashe)


Fig. 1.1: Location of MARSOL's DEMO sites

 DELIVERABLES

D16_1

D16_2

D16_3

D16_4

D6_1

D6_2


Títol: High resolution monitoring, real time visualization and reliable modeling of highly controlled, intermediate and up-scalable size pilot injection tests of underground storage of C02 (TRUST)

  • Entitat Financiadora: Unió Europea
  • Referència: Grant Agreement Nº 309067
  • Import total: 518,115Euros
  • Duració: 01-11-2012 / 01-11-2016
  • Investigador principal: Jesús Carrera

RESUM

TRUST aims at conducting CO2 injection experiments at scales large enough so that the output can be extrapolated at industrial scales. It relies on four sites: the heavily instrumented sites of Heletz (Israel, main site) and Hontomin (Spain), access Miranga (Brazil) and the emerging site in the Baltic Sea region. The objectives are to: carry out CO2 injection with different strategies, displaying characteristics representative of the large scale storage and with injection volumes that will produce extrapolable reservoir responses; Develop, use and implement characterization and MMV technologies for maximized safety and minimized risks, including real time visualization of the CO2 containment and detection of possible failures; Develop optimal injection strategies that maintain realistic figures of injectivity, and capacity while simultaneously optimizing the use of energy; Detect and mitigate CO2 leakage at an abandoned well; Produce comprehensive datasets for model verification and validation; Improve the predictive capacity and performance of computational models, as well as their capability to handle uncertainty and thermo-hydro-mechanical and chemical phenomena at different scales (at the scale of the experiments) and upscaling (extrapolation to industrial scale) simulations; Address critical non-scientific issues of public acceptance, community participation, communication, dissemination, liabilities and prepare templates for the preparation and application of injection licenses and communication with regulators; Establish on-site facilities for analysis of monitoring and measurement, providing training and capacity building; Address the risk assessment in a meaningful way; Prepare a platform for the exploitation of project findings and for knowledge and information sharing with planned, large scale, CCS projects. Allow open access to sites, and seek cooperation with large scale CO2 injection projects both at the European and International levels.

Dècada 2010

Títol: MUSTANG

  • Financiació: UE
  • Període: Marzo 2009- Junio 2012
  • Import: 338000 Euros
  • Investigador: Jesús Carrera

Títol: CO2-MATE

  • Entitat Financiadora: UE. Contract number 253678
  • Import: 223537,90€
  • Duració: 2010-2012
  • Investigador principal: Jesus Carrera

Títol: MUIGECCOS

  • Entitat Financiadora: UE- Contract number 251710
  • Import: 127.127€
  • Duracion: 2010-2012
  • Investigador principal: Jesus Carrera

Títol: Projecte WATCH

  • Financiació: Unió Europea
  • Període: 2009-2013
  • Import: 309400 €
  • Investigador: Jesús Carrera

1. RESUM

The Integrated Project (WATCH) which will bring together the hydrological, water resources and climate communities to analyse, quantify and predict the components of the current and future global water cycles and related water resources states, evaluate their uncertainties and clarify the overall vulnerability of global water resources related to the main societal and economic sectors.  WATCH project will:

 

  • analyse and describe the current global water cycle, especially causal chains leading to observable changes in extremes (droughts and floods)
  • evaluate how the global water cycle and its extremes respond to future drivers of global change (including greenhouse gas release and land cover change)
  • evaluate feedbacks in the coupled system as they affect the global water cycle
  • evaluate the uncertainties in the predictions of coupled climate-hydrological- land-use models using a combination of model ensembles and observations
  • develop an enhanced (modelling) framework to assess the future vulnerability of water as a resource, and in relation to water/climate related vulnerabilities and risks of the major water related sectors, such as agriculture, nature and utilities (energy, industry and drinking water sector)
  • provide comprehensive quantitative and qualitative assessments and predictions of the vulnerability of the water resources and water-/climate-related vulnerabilities and risks for the 21st century
  • collaborate intensively with the key leading research groups on water cycle and water resources in USA and Japan
  • collaborate intensively in dissemination of its scientific results with major research programmes worldwide (WCRP, IGBP)
  • collaborate intensively in dissemination of its practical and applied results with major water resources and water management platforms and professional organisations worldwide  (WWC, IWA) and at a  scale of 5 selected river basins in Europe Project objective(s)

2. Objectius del projecte

Background

The Global Water Cycle is an integral part of the Earth System. It plays a central role in global atmospheric circulations, controlling the global energy cycle (through latent heat) as well as the carbon, nutrient and sediment cycles. Components of the water cycle are strongly interconnected – thus, for example, the tropical rain systems drive the mid-latitude circulations and North Eur-Asian snow cover modulates the South Asian monsoon. Superimposed on the mean circulations of energy and water are the inter-annual cycles – such as El Niño/La Niña and NAO (North Atlantic Oscillation) – which cause simultaneous fluctuations across much of the globe.

 Globally, the supply of freshwater far exceeds human requirements. However, by the end of the 21st century, these requirements begin to approach the total available water. Of course, regionally the water demand – for agriculture, and domestic and industrial use – already exceeds supply (Vörösmarty et al., 2000). This will certainly get worse with increasing population and societies’ changing water demands, a situation exacerbated by the need to maintain river flows for ecological and human services.

Increasing CO2 levels and temperature are intensifying the global hydrological cycle, with an overall net increase of rainfall, runoff and evapotranspiration, and will increasingly do so (Huntington, 2006). Increasing CO2 levels are also likely to reduce evaporation and there is some evidence that recent increases in river flows globally are due to this effect (Gedney et al., 2006). Regionally there will be winners and losers. Although the predictions of future rainfall are fairly uncertain, there are indications, for example, that the Mediterranean region will see reductions of rainfall and some equatorial regions, such as India and the Sahel, will see increases (see Figure 2.1). The seasonality will also change, causing new, and sometimes unexpected, vulnerabilities.

The intensification of the hydrological cycle is likely to mean an increase in extremes – floods and droughts (Arnell et al., 2001). There are suggestions that inter-annual variability will increase – with an intensification of the El Ninõ and NAO cycles – leading to more droughts and large-scale flooding events. These cycles are global phenomena which will impact different regions simultaneously (although often in different ways).

 Feedbacks between the climate and hydrology will occur (Claussen, 2004). The snow/climate feedback is well known and described. However, feedbacks between CO2 increases, vegetation, soil moisture and climate are less well understood and are not well described in most climate and hydrological models.

 There are thus many uncertainties in our understanding of the current water cycle and how it will develop in the future.

 

Fig. 2.1 Mean percentage change in rainfall predicted by an ensemble of climate models for, 2021–2050 compared to 1961–1990, SRES A2 (Cubasch et al., 2001).

 

PUBLICACIONS

SAPRIZA-AZURI, G., JODAR, J., NAVARRO, V., SLOOTEN, L.J., CARRERA, J., Gupta,H., 2015. Impacts of rainfall spatial variability on hydrogeological response, Water Resourses Research DOI: 10.1002/2014WR016168


Títol: PANACEA

  • Financiació: UE
  • Període: Enero 2012- Enero 2015
  • Import: 3685771 Euros
  • Investigador: Jesús Carrera

 

Dècada 2000

Títol: Actualisation d'un modele numerique pour une interpretation des nouveaux essais de pompage et de tracage d'une fracture dans le laboratoire souterrain du

  • Financiació: Andra
  • Període: Octubre 00 - Diciembre 00
  • Import: 18.293,91 €

Títol: PIRAMID : Passive In situ Remediation of Acidic

  • Financiació: UE-EVK1-CT-1999-00021
  • Període: 2000 - 2003
  • Import:

Títol: Methods for assessing salt intrusion and transport in heterogeneous and fractured aquifers. Saltrans

  • Financiacion: UE - CEC-EVK1-CT-2000-00062
  • Període: Enero 01- Diciembre 03
  • Import: 291.000 €
  • Investigador principal: Jesús Carrera

Títol: RETROCK: Treatment of geosphere retention phenomena in safety assessments.

  • Financiació: UE y ENRESA
  • Període: Octubre 01 – Agosto 04
  • Import: 11.738 €
  • Investigador Principal: Xavier Sánchez-Vila

Títol: Projecte FUNMIG (Fundamental processes of radionuclide migration)

  • Financiació: Unió Europea
  • Període: 2005-2008
  • Import: 102000 €
  • Investigador: Joan de Pablo

Títol: Towards improved groundwater vulnerability assessment

  • Financiació: UE, Contract number 212298.
  • Període: Duración 4 años desde 8 de septiembre de 2008
  • Import: 376244,80 Euros
  • Investigador: Jesús Carrera

Títol: Colaboración en el ámbito de la Hidrología Subterránea (FUNMIG CIMNE)

  • Financiació: CIMNE-UPV
  • Període: Octubre 2007- Octubre 2008
  • Import: 16.440 €
  • Investigador: Daniel Fernández García

Títol: Projecte GABARDINE

  • Financiació: Unió Europea
  • Període: 2005-2009
  • Import: 224393 €
  • Investigador Principal: Xavier Sánchez-Vila

Títol: Projecte ENEN II (Consolidation of European Nuclear Education, training & knowledge management)

  • Financiació: Unió Europea
  • Període: Octubre 2006-Abril 2009
  • Import: 10000 euros
  • Investigador: Jesús Carrera

Dècada 1990

Títol: GAF-Knowledge Base for modelling soil and groundwater contamination

  • Financiació: UE
  • Període: Febrero 93 – Diciembre 95
  • Import: 34.637,05 €
  • Investigador principal: Jesús Carrera

Títol: EUGREP European Groundwater Research Programme

  • Financiació: UE - CHRX-CT92-0074 (DG 12 DSCS)
  • Període: Junio 93 – Junio 96
  • Import: 17.789,96 €
  • Investigador principal: Jesús Carrera

Títol: Development of analytical and sampling methods for priority pesticides and relevant transformation products in aquifer

  • Financiació: C.E.C./ESPRIT Project-21037-PCI-II/RETACO
  • Període: Abril 96 – Septiembre 97
  • Import: 72121,45 €

Títol: Artificial Recharge on Groundwater

  • Financiació: UE-ENV4-CT95-0071
  • Període: Febrero 96 – Enero 99
  • Import: 144.242,91 €
  • Investigador principal: Jesús Carrera

Títol: Oklo Natural Analogue

  • Financiació: UE y ENRESA
  • Període: Junio 95 – Junio 99
  • Import: 165.278, 33 €
  • Investigador Principal: Xavier Sánchez-Vila

Títol: PALMOTTU Natural Analogue

  • Financiació: UE
  • Perido: Junio 95 – Junio 99
  • Import: 75.126,51 €

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

  • adif
  • agencia-catalana-aigua
  • agencia-residus-catalunya
  • aiguas-ter-llobregat
  • ajuntament-badalona
  • ajuntament-barcelona
  • barcelona-regional
  • bridge-technologies
  • cetaqua
  • ciudad-de-la-energia
  • clabsa
  • constructora-san-jose
  • copisa
  • cuadll
  • enresa-solucions-ambientals
  • fcc
  • gemi-arids-catalunya
  • generalitat-catalunya
  • gisa
  • gobierno-espana
  • iberinsa
  • igcg
  • incasol
  • ineco
  • instituto-geologico-minero-espana
  • port-barcelona
  • sacyr
  • sener
  • seventh-framework
  • skb
  • sqm
  • ute-sagrera-ave