+34 93 401 18 60Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.UPC: C/ Jordi Girona 31, (08034 - Barcelona) - IDAEA: C/ Jordi Girona 18-26, (08034 - Barcelona)

+34 93 401 18 60Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
UPC: C/ Jordi Girona 31, (08034 - Barcelona) - IDAEA: C/ Jordi Girona 18-26, (08034 - Barcelona)

Proyectos GHS - UPC

  • Inicio
  • Proyectos Internacionales

Proyectos Internacionales del GHS

Proyectos Recientes

Título: European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments

  • Grant Agreement: N°722028
  • Periodo: 2017-2020
  • Importe: 495.745,92€
  • Investigador principal: Jesus Carrera

http://cordis.europa.eu/project/rcn/205566_en.html


Título: Furthering the Knowledge Base For Reducing the Environmental Footprint of Shale Gas Development (FracRisk)

  • Financiación: UE
  • Periodo: Junio 2015- Diciembre 2018
  • Importe: 263.000€
  • Investigador: Jesus Carrera Ramirez

http://www.fracrisk.eu/


 

Título: FREE and open source software tools for WATer resource management (FREEWAT)

  • Financiación: UE. Grant Agrement nº: 64224
  • Periodo: Abril 2015- Octubre 2018
  • Importe: 70.000 Euros
  • Investigador: Enric Vazquez Suñe

Pageweb: http://www.freewat.eu/

Newsletters:

Number 2


 Título: Groundwater Risk Management for Growth and Development

  • Financiación: UE
  • Periodo: Marzo 2015-Marzo 2019
  • Importe: 300.000 Euros
  • Investigador: Albert Folch Sancho (IP responsable-UPC)
  • Investigador responsable Co-IP de todo el proyecto (2.400.000€)

Ayuda al crecimiento socioeconómico en paises del tercer mundo y en vias de desarrollo

DESCRIPCIÓN

La población a nivel mundial está creciendo de forma significativa los ultimos años y de forma más importente en el tercer mundo y paises den vias de desarrollo. Para que este crecimiento se produzca de forma equitativa y ligado a un desarrollo sociocenómico, es importante garantizar el acceso a agua y a los recursos hídricos en general. En este contexto, el agua subterránea tiene un papel relevante debido a que es la única fuente de agua disponible en muchos paises (especialmente en muchas zonas de África y Asia) y presenta una mayor resiliencia a la contaminación y al cambio climático en comparación a las aguas superficiales. Aún así, debido a la falta de datos y las particularidades de estas regiones, se han de desarrollar nuevos enfoques a esta problemática.

Como resultado del estudio de aguas subterráneas, i más específicamente, la importancia del crecimiento económico y el desarrollo humano en este entorno, se está convertiendo en un campo de investigación relevante especialmente en los últimos años.

PROYECTOS RELACIONADOS

África: Groundwater Risk Management for Growth and Development (Gro for Good). Con la colaboración de la Universidad de Oxford y diferentes instituciones de Kènia este proyecto busca desarrollar una herramienta de gestión de riego para ayudar al Gobierno y a los usuarios a equilibrar el desarrollo humano, mejora de la salud, crecimiento económico y sostenibilidad del agua subterránea en beneficio de los más pobres.

 Llatinoamèrica: En colaboración con el Instituto Privado de Investigación Sobre Cambio Climático se han elaborado diferentes propuestas para la sostenibilidad de recursos hídricos en la Costa Pacífic de Guatemala, donde la producción de caña de azucar y plátano tienen un peso económico relevante pero también son importantes consumidores dea aguas subterránias.

Asia: las temperaturas negativas presentes en gran parte del año en muchas zonas subàrticas condicionan de forma importante la disponibilidad de recursos hídricos. En este sentido se ha estudiado cual es el efecto de la nieve, el hielo y el permafrost en la recarga y disponibilidad de aiguas subterranias a Mongolia (Cuenca del rio Upper Tuul)

The newsletter of the project Gro for Good (https://upgro.org/consortium/gro-for-good/) has been published  (February 2017):

 Newsletter_February


 Título: Mixing in Heterogeneous Media Across Spatial and Temporal Scales: From Local Non-Equilibrium to Anomalous Chemical Transport and Dynamic Uncertainty

  • Financiación: UE
  • Periodo: Noviembre de 2013 – Diciembre 2018
  • Importe: 1,5M Euros
  • Investigador: Marco Dentz

Pageweb: https://mhetscale.wordpress.com/


 Título: MARSOL

  • Financiación: UE
  • Periodo: Enero 2014- Enero 2017
  • Importe: 574.897 Euros
  • Investigador: Xavier Sanchez Vila

Pageweb: http://www.marsol.eu/

RESUMEN

Main Objectives
The main objective of MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence. With this, MARSOL aims to stimulate the use of reclaimed water and other alternative water sources in MAR and to optimize WRM through storage of excess water to be recovered in times of shortage or by influencing gradients. Widespread application of MAR can help address water security problems to stimulate economic development, improve public health and well-being, and maintain ecological functions and biodiversity. The use of MAR technologies can substitute the need for other, more energy-intensive water supply options, such as seawater desalination. MARSOL's main output will be a powerful knowledge base of existing field applications of MAR technologies for addressing different societal challenges related to water availability. The effectiveness, efficiency and sustainability of existing MAR technologies will be demonstrated, including operation, maintenance and monitoring procedures. Examples include different water sources, ranging from treated waste water to desalinated seawater and various technical solutions e.g. infiltration ponds, injection wells, river bed scarification, and hydraulic barriers against seawater intrusion. The pros and cons of each technology will be assessed systematically, and compared to alternative solutions. Economic costs and benefits of MAR options for the various economic sectors will be quantified. Causes of public concern or acceptance of MAR will be examined and proven ways to enhance public acceptability (e.g. through education and transfer of knowledge, evaluation of best practices) identified. Governance frameworks (laws, policies, institutions, etc.) that enhance the prospects of successful implementation of MAR will be proposed. Finally, guidelines will be developed for MAR site selection, technical realization, monitoring strategies, and modelling approaches to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. The main objectives of MARSOL can therefore be summarizes as:
• Demonstrate at 8 field sites that MAR is a sound, safe and sustainable strategy to increase the availability of freshwater under conditions of water scarcity.
• Improve the state of the art of MAR applications to enable low cost high efficiency MAR solutions that will create market opportunities for European Industry and SMEs (MAR to market).
• Promote the advantages of MAR by tailored training and dissemination programs to enable and accelerate market penetration.
• Deliver a key technology to face the challenge of increasing water scarcity in southern Europe, the Mediterranean and other regions of the world.


1.1.4 Demonstration Sites

Eight demonstration sites geographically distributed around the Mediterranean (Fig. 1.1) have been selected for the demonstration of different MAR objectives and technologies, and using different water sources:

Different MAR objectives:
• Replenishing of over-exploited aquifers (Lavrion, Arenales, Llobregat, Brenta)
• Combating sea-water intrusion (Lavrion, Malta South)
• Increasing the ecological and chemical status of aquifers (Campina de Faro, Llobregat, Brenta)
• Soil-Aquifer Treatment (SAT) (Lavrion, Arenales)
• Seasonal storage and aquifer storage recovery of surplus fresh waters (Menashe) FP7-ENV-2013-WATER-INNO-DEMO MARSOL Proposal Part B Page 5 of 92

Different recharge techniques:
• Infiltration basins (Lavrion, Campina de Faro, Arenales, Llobregat, Menashe)
• Forested infiltration area (Brenta)
• River bank filtration (Serchio)
• Wells (Campina de Faro, Malta South)
• Others (artificial wetlands, ditches, drainage pipes) (Arenales)

Different recharge water sources:
• Surface waters (Campina de Faro, Arenales, Brenta, Serchio)
• Treated effluents (Lavrion, Arenales, Malta South)
• Desalinated water (Menashe)


Fig. 1.1: Location of MARSOL's DEMO sites

 DELIVERABLES

D16_1

D16_2

D16_3

D16_4

D6_1

D6_2


Título: High resolution monitoring, real time visualization and reliable modeling of highly controlled, intermediate and up-scalable size pilot injection tests of underground storage of C02 (TRUST)

  • Entidad Financiadora: Unión Europea
  • Referencia: Grant Agreement Nº 309067
  • Importe total: 518,115Euros
  • Duración: 01-11-2012 / 01-11-2016
  • Investigador principal: Jesús Carrera

RESUMEN

TRUST aims at conducting CO2 injection experiments at scales large enough so that the output can be extrapolated at industrial scales. It relies on four sites: the heavily instrumented sites of Heletz (Israel, main site) and Hontomin (Spain), access Miranga (Brazil) and the emerging site in the Baltic Sea region. The objectives are to: carry out CO2 injection with different strategies, displaying characteristics representative of the large scale storage and with injection volumes that will produce extrapolable reservoir responses; Develop, use and implement characterization and MMV technologies for maximized safety and minimized risks, including real time visualization of the CO2 containment and detection of possible failures; Develop optimal injection strategies that maintain realistic figures of injectivity, and capacity while simultaneously optimizing the use of energy; Detect and mitigate CO2 leakage at an abandoned well; Produce comprehensive datasets for model verification and validation; Improve the predictive capacity and performance of computational models, as well as their capability to handle uncertainty and thermo-hydro-mechanical and chemical phenomena at different scales (at the scale of the experiments) and upscaling (extrapolation to industrial scale) simulations; Address critical non-scientific issues of public acceptance, community participation, communication, dissemination, liabilities and prepare templates for the preparation and application of injection licenses and communication with regulators; Establish on-site facilities for analysis of monitoring and measurement, providing training and capacity building; Address the risk assessment in a meaningful way; Prepare a platform for the exploitation of project findings and for knowledge and information sharing with planned, large scale, CCS projects. Allow open access to sites, and seek cooperation with large scale CO2 injection projects both at the European and International levels.

Década 2010

Título: MUSTANG

  • Financiación: UE
  • Periodo: Marzo 2009- Junio 2012
  • Importe: 338000 Euros
  • Investigador: Jesús Carrera

Título: CO2-MATE

  • Entidad Financiadora: UE. Contract number 253678
  • Importe: 223537,90€
  • Duración: 2010-2012
  • Investigador principal: Jesus Carrera

Título: MUIGECCOS

  • Entidad Financiadora: UE- Contract number 251710
  • Importe: 127.127€
  • Duracion: 2010-2012
  • Investigador principal: Jesus Carrera

Título: Proyecto WATCH

  • Financiación: Unión Europea
  • Periodo: 2009-2013
  • Importe: 309400 €
  • Investigador: Jesús Carrera

1. Project summary

The Integrated Project (WATCH) which will bring together the hydrological, water resources and climate communities to analyse, quantify and predict the components of the current and future global water cycles and related water resources states, evaluate their uncertainties and clarify the overall vulnerability of global water resources related to the main societal and economic sectors.  WATCH project will:

 

  • analyse and describe the current global water cycle, especially causal chains leading to observable changes in extremes (droughts and floods)
  • evaluate how the global water cycle and its extremes respond to future drivers of global change (including greenhouse gas release and land cover change)
  • evaluate feedbacks in the coupled system as they affect the global water cycle
  • evaluate the uncertainties in the predictions of coupled climate-hydrological- land-use models using a combination of model ensembles and observations
  • develop an enhanced (modelling) framework to assess the future vulnerability of water as a resource, and in relation to water/climate related vulnerabilities and risks of the major water related sectors, such as agriculture, nature and utilities (energy, industry and drinking water sector)
  • provide comprehensive quantitative and qualitative assessments and predictions of the vulnerability of the water resources and water-/climate-related vulnerabilities and risks for the 21st century
  • collaborate intensively with the key leading research groups on water cycle and water resources in USA and Japan
  • collaborate intensively in dissemination of its scientific results with major research programmes worldwide (WCRP, IGBP)
  • collaborate intensively in dissemination of its practical and applied results with major water resources and water management platforms and professional organisations worldwide  (WWC, IWA) and at a  scale of 5 selected river basins in Europe Project objective(s)

2. Project objective(s)

Background

The Global Water Cycle is an integral part of the Earth System. It plays a central role in global atmospheric circulations, controlling the global energy cycle (through latent heat) as well as the carbon, nutrient and sediment cycles. Components of the water cycle are strongly interconnected – thus, for example, the tropical rain systems drive the mid-latitude circulations and North Eur-Asian snow cover modulates the South Asian monsoon. Superimposed on the mean circulations of energy and water are the inter-annual cycles – such as El Niño/La Niña and NAO (North Atlantic Oscillation) – which cause simultaneous fluctuations across much of the globe.

 Globally, the supply of freshwater far exceeds human requirements. However, by the end of the 21st century, these requirements begin to approach the total available water. Of course, regionally the water demand – for agriculture, and domestic and industrial use – already exceeds supply (Vörösmarty et al., 2000). This will certainly get worse with increasing population and societies’ changing water demands, a situation exacerbated by the need to maintain river flows for ecological and human services.

Increasing CO2 levels and temperature are intensifying the global hydrological cycle, with an overall net increase of rainfall, runoff and evapotranspiration, and will increasingly do so (Huntington, 2006). Increasing CO2 levels are also likely to reduce evaporation and there is some evidence that recent increases in river flows globally are due to this effect (Gedney et al., 2006). Regionally there will be winners and losers. Although the predictions of future rainfall are fairly uncertain, there are indications, for example, that the Mediterranean region will see reductions of rainfall and some equatorial regions, such as India and the Sahel, will see increases (see Figure 2.1). The seasonality will also change, causing new, and sometimes unexpected, vulnerabilities.

The intensification of the hydrological cycle is likely to mean an increase in extremes – floods and droughts (Arnell et al., 2001). There are suggestions that inter-annual variability will increase – with an intensification of the El Ninõ and NAO cycles – leading to more droughts and large-scale flooding events. These cycles are global phenomena which will impact different regions simultaneously (although often in different ways).

 Feedbacks between the climate and hydrology will occur (Claussen, 2004). The snow/climate feedback is well known and described. However, feedbacks between CO2 increases, vegetation, soil moisture and climate are less well understood and are not well described in most climate and hydrological models.

 There are thus many uncertainties in our understanding of the current water cycle and how it will develop in the future.

 

Fig. 2.1 Mean percentage change in rainfall predicted by an ensemble of climate models for, 2021–2050 compared to 1961–1990, SRES A2 (Cubasch et al., 2001).

 

PUBLICACIONES

SAPRIZA-AZURI, G., JODAR, J., NAVARRO, V., SLOOTEN, L.J., CARRERA, J., Gupta,H., 2015. Impacts of rainfall spatial variability on hydrogeological response, Water Resourses Research DOI: 10.1002/2014WR016168

 


Título: PANACEA

  • Financiación: UE
  • Periodo: Enero 2012- Enero 2015
  • Importe: 3685771 Euros
  • Investigador: Jesús Carrera

 

Década 2000

Título: Actualisation d'un modele numerique pour une interpretation des nouveaux essais de pompage et de tracage d'une fracture dans le laboratoire souterrain du

  • Financiación: Andra
  • Periodo: Octubre 00 - Diciembre 00
  • Importe: 18.293,91 €

Título: PIRAMID : Passive In situ Remediation of Acidic

  • Financiación: UE-EVK1-CT-1999-00021
  • Periodo: 2000 - 2003
  • Importe:           

Título: Methods for assessing salt intrusion and transport in heterogeneous and fractured aquifers. Saltrans

  • Financiacion: UE - CEC-EVK1-CT-2000-00062
  • Periodo: Enero 01- Diciembre 03
  • Importe: 291.000 €
  • Investigador principal: Jesús Carrera

Título: RETROCK: Treatment of geosphere retention phenomena in safety assessments.

  • Financiación: UE y ENRESA
  • Periodo: Octubre 01 – Agosto 04
  • Importe: 11.738 €
  • Investigador Principal: Xavier Sánchez-Vila

Título: Proyecto FUNMIG (Fundamental processes of radionuclide migration)

  • Financiación: Unión Europea
  • Periodo: 2005-2008
  • Importe: 102000 €
  • Investigador: Joan de Pablo

Título: Towards improved groundwater vulnerability assessment

  • Financiación: UE, Contract number 212298.
  • Periodo: Duración 4 años desde 8 de septiembre de 2008
  • Importe: 376244,80 Euros
  • Investigador: Jesús Carrera

Título: Colaboración en el ámbito de la Hidrología Subterránea (FUNMIG CIMNE)

  • Financiación: CIMNE-UPV
  • Periodo: Octubre 2007- Octubre 2008
  • Importe: 16.440 €
  • Investigador: Daniel Fernández García

Título: Proyecto GABARDINE

  • Financiación: Unión Europea
  • Periodo: 2005-2009
  • Importe: 224393 €
  • Investigador Principal: Xavier Sánchez-Vila

Título: Proyecto ENEN II (Consolidation of European Nuclear Education, training & knowledge management)

  • Financiación: Unión Europea
  • Periodo: Octubre 2006-Abril 2009
  • Importe: 10000 euros
  • Investigador: Jesús Carrera

Década 1990

Título: GAF-Knowledge Base for modelling soil and groundwater contamination

  • Financiación: UE
  • Periodo: Febrero 93 – Diciembre 95
  • Importe: 34.637,05 €
  • Investigador principal: Jesús Carrera

Título: EUGREP European Groundwater Research Programme

  • Financiación: UE - CHRX-CT92-0074 (DG 12 DSCS)
  • Periodo: Junio 93 – Junio 96
  • Importe: 17.789,96 €
  • Investigador principal: Jesús Carrera

Título: Development of analytical and sampling methods for priority pesticides and relevant transformation products in aquifer

  • Financiación: C.E.C./ESPRIT Project-21037-PCI-II/RETACO
  • Periodo: Abril 96 – Septiembre 97
  • Importe: 72121,45 €

Título: Artificial Recharge on Groundwater

  • Financiación: UE-ENV4-CT95-0071
  • Periodo: Febrero 96 – Enero 99
  • Importe: 144.242,91 €
  • Investigador principal: Jesús Carrera

Título: Oklo Natural Analogue

  • Financiación: UE y ENRESA
  • Periodo: Junio 95 – Junio 99
  • Importe: 165.278, 33 €
  • Investigador Principal: Xavier Sánchez-Vila

Título: PALMOTTU Natural Analogue

  • Financiación: UE
  • Perido: Junio 95 – Junio 99
  • Importe: 75.126,51 €

Guardar

Guardar

Guardar

Guardar

Guardar

Guardar

  • adif
  • agencia-catalana-aigua
  • agencia-residus-catalunya
  • aiguas-ter-llobregat
  • ajuntament-badalona
  • ajuntament-barcelona
  • barcelona-regional
  • bridge-technologies
  • cetaqua
  • ciudad-de-la-energia
  • clabsa
  • constructora-san-jose
  • copisa
  • cuadll
  • enresa-solucions-ambientals
  • fcc
  • gemi-arids-catalunya
  • generalitat-catalunya
  • gisa
  • gobierno-espana
  • iberinsa
  • igcg
  • incasol
  • ineco
  • instituto-geologico-minero-espana
  • port-barcelona
  • sacyr
  • sener
  • seventh-framework
  • skb
  • sqm
  • ute-sagrera-ave