Modelling fractured porous media

Towards a discrete fracture model using a cell-centered MPFA finite volume scheme

Dennis Gläser
Barcelona, December 3rd 2015
Content

Motivation

Multi-point flux approximation methods

Mpfa - discrete fracture model

Summary and Outlook
Motivation

Exemplary applications
Motivation

Exemplary applications

picture: ucsusa.org
Motivation

Exemplary applications
Motivation

Modelling of flow through fractured rock

picture: hinderedsettling.com
Motivation
Modelling of flow through fractured rock

Motivation

Fracture representation in dfm models
Motivation

Control-volume formulation of diffusion equations

Diffusion problem:

\[-\nabla \cdot (K \nabla u) = f, \text{ in } \Omega\]

\[u = \bar{u}, \text{ on } \Gamma_D\]

\[K \nabla u \cdot n = g, \text{ on } \Gamma_N\]

Finite volume formulation:

\[\int_{\partial V} -K(x) \nabla u(x) \cdot n_v(x) \, dS = \sum_\sigma \bar{F}_{V,\sigma} = \int_V f(x) \, dx\]
Motivation

Flux approximation

Two-point flux approximation:

\[f_\sigma \approx T_\sigma (u_1 - u_2) \]

Multi-point flux approximation:

\[f_\sigma \approx \sum_{j \in J} T_{\sigma j} u_j \]
Motivation

FVCA5 - test 3: oblique flow

FV TPFA method

Reference solution [2]
Content

Motivation

Multi-point flux approximation methods

Mpfa – discrete fracture model

Summary and Outlook
Mpfa-O method

Flux calculation
Mpfa-O method

The dual grid
Mpfa-O method

Interaction regions
Mpfa-O method
Calculation of transmissivity coefficients

Conditions on sub faces: [1]
- Continuity of flux
- Continuity of potential

Conditions on sub volumes: [1]
- Potential has to match cell center value
Mpfa-O method

Expression of sub volume face fluxes

Flux over face i in cell j:

\[
f_i = -n_i^T K_j \nabla U_j
\]

Linear potential in cell j:

\[
U_j(x) = \nabla U_j \cdot (x - x_{j0}) + u_{j0}
\]

\[
\rightarrow \tilde{u}_{jk} = \nabla U_j \cdot (x_{jk} - x_{j0}) + u_{j0}
\]
Mpfa-O method

Sub volume gradient

\[\bar{u}_{jk} = \nabla U_j \cdot (x_{jk} - x_j0) + u_{j0} \]

\[\begin{align*}
X_j \nabla U_j &= \begin{bmatrix} \bar{u}_{j1} - u_{j0} \\ \bar{u}_{j2} - u_{j0} \end{bmatrix}, \\
X_j &= \begin{bmatrix} (x_{j1} - x_{j0})^T \\ (x_{j2} - x_{j0})^T \end{bmatrix}
\]
Mpfa-O method

Sub volume gradient

Introducing...

\[
R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \mathbf{v}_j^1 = R(x_{j2} - x_{j0}), \quad \mathbf{v}_j^2 = -R(x_{j1} - x_{j0}),
\]

we can write:

\[
X_j^{-1} = \frac{1}{T_j} [\mathbf{v}_j^1, \mathbf{v}_j^2], \quad T_j = (x_{j1} - x_{j0})^T R(x_{j2} - x_{j0})
\]
Mpfa-O method

Sub volume gradient

Expression for the gradient of u in scv j:

$$
\nabla U_j = \frac{1}{T_j} \sum_{k=1}^{2} v_{jk} (\bar{u}_{jk} - u_{j0}),
$$

and for the fluxes over sub face i in scv j:

$$
f_i = \sum_{k=1}^{2} - \frac{n_i^T K_j v_{jk}}{T_j} (\bar{u}_{jk} - u_{j0}) = \sum_{k=1}^{2} \omega_{ijk} (\bar{u}_{jk} - u_{j0})$$
Mpfa-O method
Transmissivity coefficients

Final system of equations:

\[f_1 = \omega_{111}(\bar{u}_1 - u_1) + \omega_{112}(\bar{u}_4 - u_1) = \omega_{121}(\bar{u}_2 - u_2) + \omega_{122}(\bar{u}_1 - u_2), \]
\[f_2 = \omega_{221}(\bar{u}_2 - u_2) + \omega_{222}(\bar{u}_1 - u_2) = \omega_{231}(\bar{u}_3 - u_3) + \omega_{232}(\bar{u}_2 - u_3), \]
\[f_3 = \omega_{331}(\bar{u}_3 - u_3) + \omega_{332}(\bar{u}_2 - u_3) = \omega_{341}(\bar{u}_1 - u_4) + \omega_{342}(\bar{u}_3 - u_4), \]
\[f_4 = \omega_{441}(\bar{u}_4 - u_4) + \omega_{442}(\bar{u}_3 - u_4) = \omega_{411}(\bar{u}_1 - u_1) + \omega_{412}(\bar{u}_4 - u_1). \]
Mpfa-O method

Transmissivity coefficients

\[f_1 = \omega_{111}(\bar{u}_1 - u_1) + \omega_{112}(\bar{u}_4 - u_1) = \omega_{121}(\bar{u}_2 - u_2) + \omega_{122}(\bar{u}_1 - u_2), \]
\[f_2 = \omega_{221}(\bar{u}_2 - u_2) + \omega_{222}(\bar{u}_1 - u_2) = \omega_{231}(\bar{u}_3 - u_3) + \omega_{232}(\bar{u}_2 - u_3), \]
\[f_3 = \omega_{331}(\bar{u}_3 - u_3) + \omega_{332}(\bar{u}_2 - u_3) = \omega_{341}(\bar{u}_1 - u_4) + \omega_{342}(\bar{u}_3 - u_4), \]
\[f_4 = \omega_{441}(\bar{u}_4 - u_4) + \omega_{442}(\bar{u}_3 - u_4) = \omega_{411}(\bar{u}_1 - u_1) + \omega_{412}(\bar{u}_4 - u_1). \]

\[f = C v - D u \]
\[A v = B u \]
\[\rightarrow f = (C A^{-1} B - D) u = T u \]
Mpfa-O method
Formulation for general grids

Boundary conditions

Random interaction volume setup
Mpfa-O method
Formulation for general grids

\[f_i = \omega_{ij+1}(\bar{u}_{j+1} - u_j) + \omega_{ij+2}(\bar{u}_{j+2} - u_j) \]
\[= \omega_{ij-1}(\bar{u}_{j-1} - u_{j-1}) + \omega_{ij-2}(\bar{u}_{j-2} - u_{j-1}), \]
\[f_N = \omega_{iNj+1}(\bar{u}_N - u_j) + \omega_{iNj+2}(\bar{u}_{j+2} - u_j) = \bar{f}_N, \]
\[f_D = \omega_{iDj+1}(\bar{u}_D - u_j) + \omega_{iDj+2}(\bar{u}_{j+2} - u_j). \]

\[f(|i+N+D| \times 1) = C(|i+N+D| \times |i+N|) v(|i+N| \times 1) - D(|i+N+D| \times |j+D|) u(|j+D| \times 1) \]
\[A(|i+N| \times |i+N|) v(|i+N| \times 1) = B(|i+N| \times |j+D|) u(|j+D| \times 1) + f(|i+N| \times 1) \]
\[\rightarrow f = \left(C A^{-1} B - D \right) u + C A^{-1} f \]
Mpfa-O method

FVCA5 - test 3: oblique flow

MPFA-O method

Reference solution [2]
Mpfa-O method

Test for two phase flow

Grid and boundary conditions

\[p_1 > p_2 \]
\[S_n = 1 \]

\[p_2 \]
\[S_n = 0 \]

FV TPFA method

MPFA-O method
Mpfa-O method
Treatment of interior boundaries

- interior Dirichlet face
- interior Flux face
Mpfa–O method

Treatment of interior boundaries

\[f_i = \omega_{ij+1}(\bar{u}_{j+1} \rightarrow i - u_j) + \omega_{ij+2}(\bar{u}_{j+2} \rightarrow i - u_j) \]
\[= \omega_{ij-1}(\bar{u}_{j-1} \rightarrow i - u_j) + \omega_{ij-2}(\bar{u}_{j-2} \rightarrow i - u_j), \]
\[f_{N+} = \omega_{iN+j+1}(\bar{u}_{N+} - u_j) + \omega_{iN+j+2}(\bar{u}_{j+2} \rightarrow i - u_j) = \tilde{f}_{N+}, \]
\[f_{N-} = \omega_{iN-j+1}(\bar{u}_{N-} - u_j) + \omega_{iN-j+2}(\bar{u}_{j+2} \rightarrow i - u_j) = \tilde{f}_{N-}, \]
\[f_{D+} = \omega_{iD+j+1}(\bar{u}_{D+} - u_j) + \omega_{iD+j+2}(\bar{u}_{j+2} \rightarrow i - u_j), \]
\[f_{D-} = \omega_{iD-j+1}(\bar{u}_{D-} - u_j) + \omega_{iD-j+2}(\bar{u}_{j+2} \rightarrow i - u_j). \]

\[
\begin{align*}
\mathbf{f}(|i+N+D| \times 1) &= \mathbf{C}(|i+N+D| \times |i+N|) \mathbf{v}(|i+N| \times 1) - \mathbf{D}(|i+N+D| \times |j+D|) \mathbf{u}(|j+D| \times 1) \\
\mathbf{A}(|i+N| \times |i+N|) \mathbf{v}(|i+N| \times 1) &= \mathbf{B}(|i+N| \times |j+D|) \mathbf{u}(|j+D| \times 1) + \mathbf{f}(|i+N| \times 1) \\
\rightarrow \quad \mathbf{f} &= \left(C A^{-1} B - D\right) \mathbf{u} + CA^{-1} \tilde{\mathbf{f}}
\end{align*}
\]
Mpfa-O method
Interior Dirichlet boundaries - exemplary results

Problem Setup:

\[p_w = 2\text{bar} \quad S_n = 0 \]

\[p_w = 3\text{bar} \quad S_n = 1 \]

\[p_w = 1\text{bar} \quad S_n = 0 \]
Mpfa-O method

Interior Dirichlet boundaries - exemplary results

Results - saturation:
Mpfa-O method

Interior Flux boundaries – exemplary results

Problem Setup:

- $p_w = 2\text{bar}$
- $S_n = 1$
- $f_{N+} = 0$
- $f_{N-} = 0$
- Internal barrier
- $p_w = 1\text{bar}$
- $S_n = 0$

Here, the diagram illustrates the setup with interior flux boundaries and exemplary results.
Mpfa-O method

Interior Flux boundaries - exemplary results

Results - saturation:
Mpfa-O method

Interior Flux boundaries – exemplary results

Results – wetting phase pressure:
Content

Motivation

Multi-point flux approximation methods

Mpfa – discrete fracture model

Summary and Outlook
Mpfa - dfm

Lower dimensional fracture elements
Mpfα - dfm

Model problem

\[
\frac{\partial (\rho \phi_m)}{\partial t} - \nabla \cdot (\rho K_m \nabla u) = 0, \quad \text{in } \Omega_i, \quad i = 1, 2
\]

\[
\frac{\partial (\bar{\rho} \alpha \phi)}{\partial t} - \nabla_{\tau} \cdot (a \rho K_{f,\tau} \nabla_{\tau} \bar{U}_f) = -\rho \left(v_{n,\gamma_2} n_{\gamma_2} + v_{n,\gamma_1} n_{\gamma_1} \right), \quad \text{in } \gamma
\]

\[
-\bar{\xi} v_{n,\gamma_1} n_{\gamma_1} + \alpha_f \bar{u}_{\gamma_1} = -(1 - \bar{\xi}) v_{n,\gamma_2} n_{\gamma_2} + \alpha_f \bar{U}_f, \quad \text{on } \gamma_1
\]

\[
-\bar{\xi} v_{n,\gamma_2} n_{\gamma_2} + \alpha_f \bar{u}_{\gamma_2} = -(1 - \bar{\xi}) v_{n,\gamma_1} n_{\gamma_1} + \alpha_f \bar{U}_f, \quad \text{on } \gamma_2
\]

\[
u_i = \bar{u}_i,
\]

\[
\bar{U}_f = \bar{\bar{u}}_f,
\]

\[
\text{on } \partial \gamma
\]
Mpfa – dfm
Approach 1: No pressure difference across fracture

Assumption $\Delta p \approx 0$ justified when:

- $K_{f,\eta} \gg K_m$
- $a \approx \epsilon$

Iterative solution algorithm:

- while $||\Delta||_\infty > \epsilon$
 - obtain u_{m}^{n+1} with u_{f}^{m} as interior Dirichlet boundary condition
 - update $u_{i}^{m} \rightarrow u_{i}^{m+1}$ with matrix in-/outfluxes as sources in fracture
 - calculate $||\Delta||_\infty = \frac{||\Delta u_{m}||_\infty}{||u_{m}||_\infty} + \frac{||\Delta u_{f}||_\infty}{||u_{f}||_\infty}$
Mpfa - dfm

Test case 1

\[\begin{align*}
K_m &= 0.01 K_f \\
p_m &= 2 \\
p_f &= 2 \\
K_f_1 &| K_f_2 | K_f_1 \\
p_f &= 1 \\
p_m &= 1
\end{align*} \]
Mpfa - dfm

Test case 1.1: homogeneous fracture permeability
Mpfa - dfm

Test case 1.1: comparison with reference solution

Mpfa-dfm

Reference solution [4]
Mpfa - dfm

Test case 1.2: heterogeneous fracture permeability
Mpfa – dfm

Test case 2: impermeable fracture tips
Mpfa - dfm

Test case 3: flux and pressure continuity on fracture tips

\[\alpha_i = n_{tip}^T K_{mi} \frac{x_i - x_{tip}}{||x_i - x_{tip}||^2} \]

\[w_i = \frac{\alpha_i}{\sum_i \alpha_i} \]

\[q_i = w_i f_{tip} \]
Mpfa - dfm

Test case 3: flux and pressure continuity on fracture tips
Mpfa - dfm

Approach 2: dirichlet coupling on fracture boundaries

\[-\xi v_A n_A + \alpha_f \bar{u}_A = -(1 - \xi) v_B n_B + \alpha_f \bar{U}_f\]

\[
(\xi = 1) \quad \rightarrow \quad \alpha_f (\bar{u}_A - \bar{U}_f) = v_A n_A
\]

\[
\alpha_f (\bar{u}_A - \bar{U}_f) = \sum_j T_{iA} u_j
\]
Mpfa - dfm

Approach 2: dirichlet coupling on fracture boundaries

\[
\alpha_f(\bar{u}_A - \bar{U}_f) = \sum_{j \notin \{j_A, j_B, j_C, j_D\}} T_{i Aj} u_j + \sum_{j \in \{j_A, j_B, j_C, j_D\}} T_{i Aj} \bar{u}_j
\]

\[
\alpha_f(\bar{u}_A - \bar{U}_f) = \beta_A + \sum_{j \in \{j_A, j_B, j_C, j_D\}} T_{i Aj} \bar{u}_j
\]

\[
(T_{i Aj_A} - \alpha_f) \bar{u}_{jA} + T_{i Aj_B} \bar{u}_{jB} + T_{i Aj_C} \bar{u}_{jC} + T_{i Aj_D} \bar{u}_{jD} = \alpha_f \bar{U}_f - \beta_A
\]
Mpfa - dfm

Approach 2: dirichlet coupling on fracture boundaries

Local system of equations for the face potentials:

\[
(T_{iA} - \alpha_f) \bar{u}_j + T_{iB} \bar{u}_j + T_{iC} \bar{u}_j + T_{iD} \bar{u}_j = \alpha_f \bar{U}_f - \beta_A
\]

\[
T_{iB} \bar{u}_j + (T_{iB} - \alpha_f) \bar{u}_j + T_{iC} \bar{u}_j + T_{iD} \bar{u}_j = \alpha_f \bar{U}_f - \beta_B
\]

\[
T_{iC} \bar{u}_j + T_{iC} \bar{u}_j + (T_{iC} - \alpha_f) \bar{u}_j + T_{iD} \bar{u}_j = \alpha_f \bar{U}_f - \beta_C
\]

\[
T_{iD} \bar{u}_j + T_{iD} \bar{u}_j + T_{iD} \bar{u}_j + (T_{iD} - \alpha_f) \bar{u}_j = \alpha_f \bar{U}_f - \beta_D
\]
Mpfa – dfm

Approach 3: internal flux boundaries on fracture facets

\[-\xi v_{n,\gamma_1} n_{\gamma_1} + \alpha_f \bar{u}_{\gamma_1} = -(1 - \xi) v_{n,\gamma_2} n_{\gamma_2} + \alpha_f \bar{U}_f,\]

\[-\xi v_{n,\gamma_2} n_{\gamma_2} + \alpha_f \bar{u}_{\gamma_2} = -(1 - \xi) v_{n,\gamma_1} n_{\gamma_1} + \alpha_f \bar{U}_f,\]

Local system for $\xi = 1$:

\[
f_i = \omega_{ij+1}(\bar{u}_{j+1 \rightarrow i} - u_j) + \omega_{ij+2}(\bar{u}_{j+2 \rightarrow i} - u_j) = \omega_{ij-1}(\bar{u}_{j-1 \rightarrow i} - u_j) + \omega_{ij-2}(\bar{u}_{j-2 \rightarrow i} - u_j),
\]

\[
f_{N+} = \omega_{iN+j+1}(\bar{u}_{N+} - u_j) + \omega_{iN+j+2}(\bar{u}_{j+2 \rightarrow i} - u_j) = \alpha_f(\bar{u}_{N+} - \bar{U}_f),
\]

\[
f_{N-} = \omega_{iN-j+1}(\bar{u}_{N-} - u_j) + \omega_{iN-j+2}(\bar{u}_{j+2 \rightarrow i} - u_j) = \alpha_f(\bar{u}_{N-} - \bar{U}_f).
\]

\[
\rightarrow f = (CA^{-1} B - D) u + CA^{-1} \bar{f}
\]
Mpfa - dfm
Test case 1.3: low fracture permeability
Mpfa – dfm

Test case 1.3: heterogeneous low fracture permeability
Mpfa - dfm

Test case 4: crooked barrier
Content

Motivation

Multi-point flux approximation methods

Mpfa - discrete fracture model

Summary and Outlook
Summary and Outlook

Overview over the introduced method:

- FV Mpfa model in matrix domain
- Extended local systems in matrix \(\rightarrow\) fractures are interior boundaries
- Fracture-matrix interaction included through coupling conditions...
 - as source terms in fracture domain
 - in the local systems in matrix domain
- The method is...
 - locally mass conservative
 - consistent for heterogeneous porous media
Summary and Outlook

Outlook:

- Implementation of a monolithic scheme
 → parameter & convergence study
 → study on influence of the parameter ξ
- Extension to multiphasic flow and transport
- Implementation of MPSA methods for linear elasticity & Biot
 → inclusion of fracture propagation models
 → re-meshing algorithm development
- Extension to 3D ...
THANKS FOR YOUR ATTENTION

ANY QUESTIONS?
References

An introduction to multipoint flux approximations for quadrilateral grids.
405–432–.

Tatomir, A., Wolff, M., and Helmig, R.
Dumux: Dune for multi-phase, component, scale, physics, ... flow and transport in porous media.
Advances in Water Resources 34, 9 (Sept. 2011), 1102–1112.

Modeling fractures and barriers as interfaces for flow in porous media.

From discrete to continuum concepts of flow in fractured porous media.

The behavior of naturally fractured reservoirs.
—.